
© I N - S T A T / M D R M A R C H 2 9 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

its 64-bit extensions from AMD64. An independent analysis
by MPR indicates both companies are correct. Except for a few
minor differences, the two 64-bit architectures are identical.

MPR compared all the new instructions, modified
instructions, deleted instructions, and modifications to the
register files—including control registers, system registers,
and registers visible to application programs. We also com-
pared the memory-addressing schemes and many other ar-
chitectural features, such as data-addressing modes, context-
switching behavior, interrupt handling, and support for
existing 16- and 32-bit x86 execution modes. In every case,
we found that Intel had patterned its 64-bit x86 architecture
after AMD64 in almost every detail.

However, we also found a few differences that could
make some software written for one 64-bit architecture
incompatible with the other architecture. Some of these dif-
ferences may be resolved in future 64-bit x86 processors, or
even in future steppings of x86 processors already an-
nounced or on the market. In other cases, software can eas-
ily adapt to the differences by executing slightly different
code, after first probing the CPU to learn which 64-bit
extensions it supports.

MPR found nothing to contradict Intel’s promise that
its 64-bit x86 processors will run the 64-bit operating sys-
tems developed for AMD64. At the same time, Intel’s reluc-
tance to make a blanket guarantee about mutual 64-bit soft-
ware compatibility is justified by the minor differences we
discovered. Of course, that’s always the case when Intel or

AMD introduces new x86 extensions—such as Intel’s SSE3
media extensions, which aren’t yet supported by AMD.

Despite the differences, Intel clearly derived its 64-bit
architecture by reading AMD’s prerelease documentation
for AMD64 and by testing AMD64 processors. (See sidebar,
“Intel and AMD Manuals Sing Similar Tunes.”) Intel’s
reverse-engineering of AMD64 marks a major turning
point in the historical relationship between the companies.
Although AMD has in the past introduced some innova-
tions to the x86 architecture—the 3DNow multimedia
extensions being a prime example—this is the first time
AMD has truly steered the direction of the world’s most
important microprocessor architecture, which Intel in-
vented in 1978 and has closely guarded for 26 years.

Intel plans to introduce its first 64-bit x86 chip, the
Nocona Xeon server processor, in 2Q04. Actually, Nocona is
based on the same core as the recently released Prescott Pen-
tium 4, which has the 64-bit extensions but disables them.
Nocona activates the extensions for the first time and enables
other features to support two-way multiprocessing. (See
MPR 3/15/04-01, “Intel Addresses the 64-Bit Question.”)

AMD, of course, has been shipping 64-bit x86 proces-
sors since early 2003, when it introduced the Opteron server
processor. (See MPR 4/28/03-01, “AMD Serves Up
Opteron.”) AMD’s Athlon 64 desktop processor has been
shipping since September 2003 and is now available in sev-
eral variations. (See MPR 1/20/04-01, “Athlon 64 Moving to
Mass Market.”)

AMD AND INTEL HARMONIZE ON 64
Intel’s 64-Bit x86 Extensions Are Largely Compatible With AMD64

By Tom R. Halfhi l l {3/29/04-01}

Intel says its new 64-bit x86 extensions will run the same 64-bit operating systems and

almost all the same 64-bit application software as AMD’s 64-bit architecture does. AMD

says software compatibility should be no surprise, because Intel virtually reverse-engineered

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

Deciphering the Nomenclature
Before reviewing all the similarities and differences between
the 64-bit x86 architectures from AMD and Intel, it’s impor-
tant to understand the terminology, which can be confusing.
AMD originally named its 64-bit architecture x86-64, but
now calls it AMD64. Intel recently announced that its 64-bit
x86 architecture will be called Intel Extended Memory 64
Technology (EM64T). Intel also uses the term IA-32e to refer
specifically to the new 64- and 32-bit execution modes of its
EM64T processors. (“IA-64” would have been the logical
name for Intel’s 64-bit x86, but it’s already the name of a
completely different and incompatible 64-bit architecture
that is the basis of Intel’s Itanium server processors.)

Now that AMD has dropped “x86-64” in favor of
“AMD64,” MPR will adopt “x86-64” as the generic term for
the union of the two 64-bit x86 architectures. We will use
the terms EM64T and AMD64 when referring to respective
Intel and AMD vendor-specific features.

Got it? Good, because now things become even more
confusing. Processors based on either x86-64 architecture
have two distinct execution modes. When they are running a
32-bit operating system, they are in “legacy mode,” which, to
the software, looks exactly like a 32-bit x86 processor. For
complete software compatibility, legacy mode supports all
the existing execution modes of the x86, including the older
16-bit modes. When a processor is in legacy mode, it’s as if
the 64-bit architecture doesn’t exist.

When an x86-64 processor runs a 64-bit operating sys-
tem, it enters a different execution mode that AMD calls
“long mode” and Intel calls “IA-32e mode.” In this mode, the
64-bit extensions become visible to 64-bit software. Long
mode and IA-32e mode include a 32-bit submode that both
companies call “compatibility mode.” In this mode, unmod-
ified 32-bit software can run on the 64-bit operating system
and can coexist with 64-bit application software, but it can-
not use the 64-bit extensions. Compatibility mode makes it
unnecessary to dual-boot a 32-bit operating system with the
64-bit operating system to run 32-bit software.

However, 32-bit compatibility mode is not quite the
same as 32-bit legacy mode.Although both can run 32-bit soft-
ware, compatibility mode requires a 64-bit operating system,
whereas legacy mode cannot run a 64-bit operating system.
Furthermore, compatibility mode doesn’t support Virtual 8086
mode, which allows a 16- or 32-bit protected-mode operating

system to run programs written for 16-bit “real mode,” the
original unprotected execution mode of the x86. Compatibil-
ity mode doesn’t support real mode, either, but it does sup-
port 16-bit protected mode.

In response to a query from MPR, Microsoft has con-
firmed that its 64-bit versions of Windows XP and Windows
Server 2003 won’t have a “compatibility box” for running
16-bit software. Therefore, to run old 16-bit programs on an
x86-64 processor, it will be necessary to boot a 16- or 32-bit
operating system in legacy mode, either instead of or in addi-
tion to the 64-bit operating system. Of course, few of today’s
users run 16-bit software, so this is a minor concern.

In AMD’s long mode and Intel’s IA-32e mode, an
attributes byte in the code-segment descriptor determines
when a 64-bit operating system must switch between 64-bit
execution mode and 32-bit compatibility mode. Software
code in a 64-bit memory segment requires 64-bit mode; code
in a 32-bit memory segment requires compatibility mode.
The code spaces (and the memory-addressing schemes
within those spaces) are completely separate, which is similar
to the way a 32-bit operating system switches between 32-
and 16-bit modes on the x86, so x86-64 preserves the histor-
ical structure. Figure 1 illustrates the relationships among the
various execution modes for x86-64 processors.

In general, x86-64 extends or adapts existing x86 struc-
tures instead of introducing entirely new ones, even when a
new mechanism might be more in vogue with current archi-
tectural trends. Both AMD and Intel want to preserve the
x86’s character, complex though it is, for the sake of famil-
iarity. They believe x86 programmers already face a steep
enough learning curve.

Comparing 64-Bit Instruction Sets
Now to the meat of x86-64. Each company has introduced a
slightly different instruction-set architecture (ISA); these
will probably converge over time. The core x86 instruction
set remains the same: it’s still very much a CISC instruction
set with roots in the 1970s, carrying along such anachro-
nisms as instruction prefixes, complex multicycle instruc-
tions that execute in microcode, and variable-length opcodes
ranging in size from 8 bits to 120 bits. Nobody will mistake
x86-64 for a 64-bit RISC.

Numerous instructions that formerly manipulated 32-bit
and smaller operands can now handle 64-bit operands, as well,

thanks to new or extended 64-bit
registers and a new 64-bit instruc-
tion prefix called REX. The REX
prefix modifies existing instruc-
tions so they can access the full
width of the 64-bit registers. (See
MPR 9/4/00-01, “AMD Drops 64-
Bit Hammer on x86.”) Both AMD
and Intel use the REX prefix in the
same way, and both companies
have reassigned the same space in

© I N - S T A T / M D R M A R C H 2 9 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

AMD and Intel Harmonize on 64

Figure 1. This chart, adapted from the 64-bit programming manuals from AMD and Intel, shows that
x86-64 processors have two new execution modes distinct from the existing 32-bit “legacy mode.”

32 bits 32 bits 32 bits
16 bits 16 bits 16 bits

Typical
GPR

Width

Long Mode
or
IA-32e Mode

64-bit mode
New 64-bit

OS

Yes 64 bits 32 bits Yes 64 bits

Operating Mode

Compatibility
mode

No No

Operating
System
Required

Application
Recompile
Required

Defaults
Register

ExtensionsAddress
Size

Operand
Size

3

the opcode map to define various forms of the prefix. That
opcode space is used by the single-byte opcode versions of the
INC and DEC instructions in the 32-bit ISA, so the opcodes for
those instructions are different for 64-bit software but other-
wise remain the same.

In all, there are only ten “new” 64-bit instructions in the
superset of both 64-bit ISAs. We qualify the term “new”
because AMD and Intel quibble over the definition. Intel’s
64-bit programming manuals list ten new instructions, but
six of them are actually extended versions of existing instruc-
tions that use the same opcodes, usually with slightly differ-
ent mnemonics. These six instructions (CDQE, CMPSQ,
LODSQ, MOVSQ, MOVZX, and STOSQ) perform the same
kinds of operations on 64-bit operands (quadwords, in x86
parlance) that six instructions with similar or identical
mnemonics (CWDE, CMPSD, LODSD, MOVSD, MOVZX, and
STOSD) perform on 32-bit doubleword operands. In other
words, the instructions are 64-bit extended versions of exist-
ing 32-bit instructions, like many other 64-bit instructions,
but they may have slightly different mnemonics assigned to
the same opcodes. For that reason, AMD doesn’t consider
these six instructions genuinely new, as Intel does.

Two other “new” instructions—SYSCALL and SYS-
RET—aren’t really new, either. AMD introduced them years
ago in its 32-bit x86 processors. Now, in EM64T, Intel supports
the instructions for the first time, though in a limited fashion.

Yet another “new” instruction is a simple extension of
an existing x86 instruction that already manipulates 64 bits
at a time; the new version manipulates 128 bits. Although
many other 64-bit instructions merely extend the operands
of 32-bit instructions, this particular instruction—CMPX-
CHG16B—deserves special mention because it’s the only
new instruction we found that isn’t supported by both 64-
bit ISAs. We’ll explain the genesis of this instruction shortly.

We are thus left with only one truly new 64-bit
instruction: SWAPGS. Like CMPXCHG16B, SYSCALL, and
SYSRET, it requires some explanation. Refer to Table 1 for
a list of all the instructions Intel or AMD considers new.

As noted above, CMPXCHG16B is the only new instruc-
tion not supported by both 64-bit ISAs. Intel
has it; AMD doesn’t. It’s an extension of
CMPXCHG8B, an instruction found in 32-bit
x86 processors. The CMPXCHG8B instruction
compares the contents of two 32-bit registers
(EDX and EAX) with an eight-byte value in
memory. If the values are equal, it replaces the
memory value with the contents of two other
registers (ECX and EBX) and sets the ZF flag.
Otherwise, it loads the memory value into the
EDX and EAX registers and clears the ZF flag.
The new 64-bit version of this instruction,
CMPXCHG16B, works in a similar fashion
with pairs of 64-bit values, albeit with differ-
ent pairs of new 64-bit registers. Note that
although CMPXCHG16B operates on 128 bits

of data, it’s part of Intel’s core 64-bit ISA for EM64T, not part
of the SSE/SSE2/SSE3 multimedia extensions, which com-
monly operate on 128-bit operands, using a separate file of
128-bit-wide XMM registers.

In 32-bit software, programmers sometimes use the
CMPXCHG8B instruction to compare a 32-bit pointer and a
32-bit version number stored in contiguous memory loca-
tions. Because CMPXCHG8B is a single instruction that can
compare and (optionally) change both 32-bit values simul-
taneously, it’s useful for updating the pointer and version
number atomically, without interruptions. In 64-bit soft-
ware, pointers can be 64 bits long, so Intel decided it was
logical to extend the instruction to create CMPXCHG16B,
which operates on two 64-bit values stored in contiguous
memory locations. Like CMPXCHG8B, it is an atomic (inter-
locked) operation.

An AMD64 programmer could try achieving the same
result as CMPXCHG16B by using two CMPXCHG8B in-
structions (or a larger number of ordinary CMP and MOV
instructions), but the operation wouldn’t be atomic, which
could be vital for some functions that must not be inter-
rupted. For that reason, and to strive for 100% compatibil-
ity, AMD will almost certainly add CMPXCHG16B to future
AMD64 processors.

Faster Context Switching in x86-64
The new SWAPGS instruction was created by Kevin
McGrath, an AMD Fellow and the architect of AMD64, and
David Cutler, the former VMS guru from Digital who joined
Microsoft and masterminded the development of Windows
NT. As McGrath tells the story, Cutler sought a faster way
for the 64-bit version of Windows XP to switch contexts
between applications and the operating system. SWAPGS
was the result. It allows the operating system to rapidly load
into the GS register a pointer to system data structures. (The
GS register is an existing segment register that holds a
descriptor for a data segment.)

Typically, SWAPGS will execute after a SYSCALL
instruction to the operating system. Before switching back

© I N - S T A T / M D R M A R C H 2 9 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

AMD and Intel Harmonize on 64

64-Bit Instruction Description Notes
CDQE Convert doubleword to quadword New mnemonic for old opcode
CMPSQ Compare strings by quadword New mnemonic for old opcode
CMPXCHG16B* Compare and exchange 16 bytes Supported by EM64T only
LODSQ Load string quadword New mnemonic for old opcode
MOVSQ Move string quadword New mnemonic for old opcode
MOVZX Move with zero-extend 64-bit version of old instruction
STOSQ Store string quadword New mnemonic for old opcode
SWAPGS Swap GS base register Supported by AMD64 and EM64T
SYSCALL** Fast system call to ring 0 Supported by AMD64 and EM64T
SYSRET** Return from fast system call Supported by AMD64 and EM64T

Table 1. These are the ten “new” instructions in the 64-bit ISAs from AMD and Intel. Half
are extended versions of existing instructions with slightly different mnemonics but not gen-
uinely new opcodes. *AMD64 supports only the 32-bit version of this instruction (CMPX-
CHG8B), not CMPXCHG16B. **Instructions formerly supported by AMD only in its 32-bit
ISA, now supported by AMD in AMD64 and Intel in EM64T.

4

to the context of the application program (with SYSRET),
the operating system executes another SWAPGS instruction
to restore the application’s data pointer in the GS register.
SWAPGS is valid for 64-bit software only and is supported
by AMD64 and EM64T.

Which brings us to SYSCALL and SYSRET, two
almost-new instructions that contribute another confusing
chapter to the convoluted history of the x86. Historically,
AMD and Intel have offered two different pairs of 32-bit
instructions for switching contexts to and from the operating
system. Both pairs of instructions perform essentially the
same task, but they work somewhat differently. Intel sup-
ported SYSENTER and SYSEXIT; AMD introduced
SYSCALL and SYSRET in its 32-bit processors several years
ago. For the sake of compatibility, AMD’s 32-bit processors
also support SYSENTER and SYSEXIT, but Intel’s 32-bit
processors don’t support SYSCALL and SYSRET.

When creating AMD64, AMD promoted SYSCALL
and SYSRET to 64-bit rank, and AMD continues to support
the 32-bit versions of the instructions. In a new spirit of 64-bit

harmony, Intel now supports SYSCALL and SYSRET as
well, but only for 64-bit software—32-bit software must still
use SYSENTER and SYSEXIT or alternative instructions
that do the same thing, even when running in IA-32e com-
patibility mode on a 64-bit operating system. At the same
time, Intel provides extended 64-bit versions of SYSENTER
and SYSEXIT for loyalists who can’t bring themselves to use
SYSCALL and SYSRET in IA-32e 64-bit mode.

Meanwhile, AMD decided not to support SYSENTER
and SYSEXIT for 64-bit software, claiming that Windows
programs almost never use them, anyway. However, both
instructions are still valid for 32-bit software running on a
32-bit operating system in legacy mode on an AMD64
processor. Looking at confusing architectural baggage like
this, historians will someday scratch their heads and wonder
why the x86 so decisively won the RISC vs. CISC war.

Deleted Instructions and Strange Differences
To be fair, AMD did seize the opportunity to do some house-
cleaning with AMD64. Some old features, rarely or never used

by modern operating systems, such as V8086
mode and hardware task switching, are gone.
The instruction set is trimmed down, too. In all,
27 instructions from the 32-bit x86 ISA are
invalid when running 64-bit software on an
AMD64 processor. Intel largely followed suit by
likewise invalidating 27 instructions in the 64-
bit mode of EM64T processors. However, MPR
discovered that Intel’s 27 invalid instructions
aren’t the same as AMD’s 27 invalid instructions.

The differences are the aforementioned
SYSENTER and SYSEXIT plus LAHF (load
status flags into AH register) and SAHF (store
AH register into status flags). In 64-bit mode,
Intel supports SYSENTER and SYSEXIT, but
AMD doesn’t; AMD supports LAHF and
SAHF, but Intel doesn’t.

LAHF and SAHF are an odd case that illus-
trates the lack of communication between these
rival companies. Intel doesn’t support the in-
structions because it defined EM64T after study-
ing early versions of AMD64 manuals and testing
early AMD64 processors. At first, those manuals
and processors made LAHF and SAHF invalid
for 64-bit software. Later—it’s unclear when—
AMD decided to support the instructions. They
are useful for fast context switching because they
can save and restore all the status flags in a sin-
gle operation. The latest AMD64 manuals list
LAHF and SAHF as valid for 64-bit programs,
and AMD says the latest steppings of AMD64
processors will execute them. Unfortunately,
because AMD and Intel don’t collaborate on
issues like this, Intel was unaware of AMD’s rever-
sal and omitted the instructions from EM64T.

© I N - S T A T / M D R M A R C H 2 9 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

AMD and Intel Harmonize on 64

Instruction Description 64-Bit Invalid 64-Bit Reassigned
AAA ASCII adjust after add AMD - Intel —
AAD ASCII adjust AX before division AMD - Intel —
AAM ASCII adjust AX after multiply AMD - Intel —
AAS ASCII adjust AL after subtract AMD - Intel —
ARPL Adjust RPL field of segment selector — AMD - Intel
BOUND Check array index against bounds AMD - Intel —
CALL Call far absolute addr in operand AMD - Intel —
DAA Decimal adjust AL after add AMD - Intel —
DAS Decimal adjust AL after subtract AMD - Intel —
DEC Decrement by 1 (single-byte opcode) — AMD - Intel
INC Increment by 1 (single-byte opcode) — AMD - Intel
INTO Interrupt to overflow vector AMD - Intel —
JMP Jump to far absolute addr in operand AMD - Intel —
LAHF Load status flags into AH register Intel —
LDS Load DS:r16 with far ptr from memory AMD - Intel —
LDS Load DS:r32 with far ptr from memory AMD - Intel —
LES Load ES:r16 with far ptr from memory AMD - Intel —
LES Load ES:r32 with far ptr from memory AMD - Intel —
POP DS Pop top of stack into DS register AMD - Intel —
POP ES Pop top of stack into ES register AMD - Intel —
POP SS Pop top of stack into SS register AMD - Intel —
POPA Pop all general-purpose regisers AMD - Intel —
POPAD Pop all general-purpose regisers AMD - Intel —
PUSH CS Push CS register onto stack AMD - Intel —
PUSH DS Push DS register onto stack AMD - Intel —
PUSH ES Push ES register onto stack AMD - Intel —
PUSH SS Push SS register onto stack AMD - Intel —
PUSHA Push all GPRs on stack (words) AMD - Intel —
PUSHAD Push all GPRs on stack (doublewords) AMD - Intel —
SAHF Store AH register into flags Intel —
SYSENTER Fast system call AMD —
SYSEXIT Fast system exit AMD —

Table 2. Instructions listed in this table as “64-Bit Invalid” remain in the 32-bit x86 ISA but
are no longer available to 64-bit programs. Instructions listed as “64-Bit Reassigned” are still
available to 64-bit programs but have reassigned opcodes in 64-bit mode. AMD and Intel
largely agree on these changes, except that Intel continues to support SYSENTER and
SYSEXIT for 64-bit software and does not support LAHF and SAHF for 64-bit software.

5

Even while MPR was preparing this article, Intel said any
attempt to execute the LAHF and SAHF instructions on the
latest AMD64 processors in its possession caused an illegal-
opcode exception. MPR, too, has been unable to verify that the
latest AMD64 processors support the instructions.

As a result, EM64T doesn’t support LAHF and SAHF for
64-bit software, at least in the first implementations of Intel’s
64-bit processors. (Note that the descriptions of these in-
structions in Intel’s 64-Bit Extension Technology Software-
Developer’s Guide, Revision 1.00, are inconsistent: they are
listed as both valid and invalid on the same pages.) Intel
declines to say whether future EM64T processors will support
the instructions. It may not matter, if programmers avoid
using LAHF and SAHF—a likely possibility, since the instruc-
tions apparently won’t execute on most AMD64 processors
already in the hands of users. Although it would be possible to
use the instructions by probing the CPU ID and then execut-
ing a special code path, it’s probably not worth the effort.

Except for SYSENTER, SYSEXIT, LAHF, and SAHF,
the other instructions deleted from 64-bit mode are the same
in both ISAs. In addition, both 64-bit ISAs reassign the
opcodes for three instructions: DEC and INC (to release op-
code space for the REX prefixes mentioned earlier) and
ARPL. Table 2 lists all the deleted and reassigned instructions.

Eagle-eyed programmers may find what appears to be
another incompatibility between the 64-bit ISAs from AMD
and Intel, but MPR has ascertained that it’s a documentation
error.Volume II of Intel’s 64-Bit Extension Technology Software-
Developer’s Guide (Revision 1.00) states that the PUSH-
immediate instruction will zero-extend a 32-bit operand to
64 bits. Actually, the operand will be sign-extended, not zero-
extended, which is consistent
with the PUSH-immediate
instruction in AMD64.

Register Files Are Fully
Compatible
As far as MPR has been able to
determine, the register files of
AMD64 and EM64T are func-
tionally identical. Those regis-
ter files include the registers
visible to application pro-
grams as well as the special
system and control registers
visible only to software run-
ning at the highest privilege
level of the processor—mainly
the operating system. With
both 64-bit ISAs, the new reg-
isters and extended portions
of existing registers are visible
to 64-bit programs only.

Application-visible reg-
isters are more plentiful in

x86-64, although in this respect most RISC processors are still
better endowed. The constricted general-purpose register
(GPR) file of the old x86 ISA has only eight 32-bit registers,
and they’re not truly as “general purpose” as GPRs in modern
architectures, due to historical limitations that date back to
the x86’s inception as a 16-bit architecture. In x86-64, all
eight of the original GPRs (EAX–ESP) are extended to 64
bits, and there are eight additional 64-bit GPRs (r8–r15).
Doubling the GPR file is a big improvement. Even so, a typi-
cal RISC processor has 32 GPRs. AMD says it settled for 16
GPRs because they’re enough to relieve most of the conges-
tion of the old register file while preserving the shorter regis-
ter addresses that help make x86 code denser than RISC code.

The multimedia register file, which Intel introduced in
1999 with the Streaming SIMD Extensions (SSE), is still 128
bits wide in x86-64 but twice as large: eight new registers, for
a total of sixteen. The floating-point register file, actually
addressed as a LIFO stack in the x86/x87, is unchanged in
x86-64: it’s still eight registers deep and 80 bits wide. MMX
multimedia instructions share these registers with floating-
point instructions, but they address the registers as a flat file,
not as a stack, and use only the 64-bit mantissa portion of
each 80-bit register. Figure 2 shows the most important
changes to the register files in x86-64.

Several control and status registers have been extended
to 64 bits in x86-64: the instruction pointer, flags register,
CR0–CR4 control registers, debug registers, and descriptor-
table registers. The extended CR3 register allows page tables
to be located anywhere in the 64-bit flat-memory space, and
the extended descriptor-table registers do the same for seg-
ment tables.

© I N - S T A T / M D R M A R C H 2 9 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

AMD and Intel Harmonize on 64

Figure 2. The 64-bit ISAs from AMD and Intel both define the same register files, adding several new 64-bit
registers and extending the 32-bit registers to 64 bits. Apart from some minor differences in register names,
AMD64 and EM64T are fully compatible in this aspect of the x86-64 architecture.

General-Purpose
Registers (GPR)

063

Instruction Pointer

063

RIPEIP

Flags Register

063
RFLAGS0 EFLAGS

MMX7/FPR7
MMX6/FPR6
MMX5/FPR5
MMX4/FPR4
MMX3/FPR3
MMX2/FPR2
MMX1/FPR1
MMX0/FPR0

64-Bit Media and
Floating-Point Registers

R15
R14
R13
R12
R11
R10
R9
R8

XMM15
XMM14
XMM13
XMM12
XMM11
XMM10
XMM9

RSP
RDI
RSI
RBP
RDX
RCX
RBX
RAX XMM0

XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8

128-Bit Media
Registers

0127

Register extensions, supported in 64-bit mode

Legacy x86 registers, supported in all modes Application-programming registers also include the
128-bit media control-and-status register and the
x87 tag-word, control-word, and status-word registers.

6

Two new special registers are the extended feature-
enable register (EFER) and the task-priority register (TPR,
also known as CR8). AMD refers to the EFER simply as
EFER, whereas Intel calls it IA32_EFER, but they’re function-
ally the same. They control and indicate the status of special
features, such as 64-bit mode. For example, bit 8 (LME) in
this register enables long mode on an AMD64 processor and
IA-32e mode on an EM64T processor, and bit 10 (LMA) indi-
cates whether long mode or IA-32e mode is currently active.

The new TPR is the result of another collaboration
between Kevin McGrath at AMD and David Cutler at
Microsoft. One of the few registers that Windows uses more
often than the accumulator (EAX register) is the TPR in the
advanced programmable interrupt controller (APIC),
which is usually an external chip. When the operating sys-
tem accesses this register, it must perform a relatively slow
memory-mapped-I/O read or write operation. The new TPR
register in x86-64 is an architectural control register, so the

operating system can access it with a much faster MOV-CR8
instruction. Multitasking operating systems like Windows fre-
quently use the TPR to block lower-priority tasks from pre-
empting higher-priority tasks. The architectural definition of
the TPR appears to be the same in both AMD64 and EM64T.

Both 64-bit ISAs implement uniform byte-size register
addressing. In other words, most instructions that use 64-bit
registers can manipulate register values 8, 16, 32, or 64 bits
long. This helps preserve compatibility with older software
and is useful for programs that manipulate smaller data—
they don’t have to pad the operands with zeroes.

Memory Becomes Bigger and Flatter
Memory addressing is almost identical in AMD64 and EM64T,
although the first 64-bit processors from AMD and Intel don’t
implement the maximum number of memory addresses per-
mitted by their 64-bit ISAs. Nor will they need to for many
years, because the amount of memory they can support is
mind-boggling. Intel has estimated that the PC industry needs
one extra bit of memory addressing per year; at that rate, x86-
64 has enough potential physical-address space to last until
2020 and enough virtual-address space to reach 2032. (To put
those estimates in perspective, 2020 roughly matches Intel’s
original end-of-life projection for its other 64-bit architecture,
IA-64, once the intended heir to the x86 throne.)

When running 64-bit software, x86-64 supports 64-bit
virtual or linear memory addressing and 52-bit physical
memory addressing. The actual memory-address ranges
can be less than these limits, depending on the implementa-
tion. Intel says its first EM64T processors will support 48-bit
virtual addressing and 36- or 40-bit physical addressing.
AMD’s current Opteron processors support 48-bit virtual
addressing and 40-bit physical addressing.

The 64-bit virtual space (16 exabytes) is absolutely flat,
banishing the clumsy memory segments that have vexed x86
programmers since the 64K-segment days of the 8086. In
64-bit mode, the program code, data, and stack all share the
same memory space. However, true to character, x86-64 pre-
serves the concept of segments in a limited way. Operating
systems can still define code segments for some of their inter-
nal data structures—specifically, the FS and GS segments—
and the attributes byte of the code-segment register still con-
trols the processor’s privilege level and execution mode (16,
32, or 64 bits). A 64-bit program simply ignores the other
attribute bytes that set the code segment’s base address and
upper limit. This approach to setting privilege levels and exe-
cution modes retains a familiar x86 structure instead of
introducing a whole new mechanism.

For backward compatibility, 32-bit programs still use
segmented memory in their usual address space, even when
running on a 64-bit operating system. Therefore, some of the
flat 64-bit virtual memory will be divided into 32-bit seg-
ments, but the memory mapping is transparent to application
programmers. As always, the processor and operating system
dynamically map the virtual memory addresses onto physical

© I N - S T A T / M D R M A R C H 2 9 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

AMD and Intel Harmonize on 64

I n t e l a n d A M D M a n u a l s S i n g
S i m i l a r Tu n e s

Programmers who carefully read the 64-bit programming
manuals from AMD and Intel will notice many similarities.
Numerous passages in the two-volume EM64T manual
echo AMD’s five-volume AMD64 manual, sometimes
word for word. It’s not a coincidence, and neither company
considers it plagiarism.

AMD and Intel have a cross-licensing agreement as
well as a “gentlemen’s agreement” that allows them to bor-
row portions of each other’s documentation, says AMD64
architect Kevin McGrath. The companies have agreed that
clarity and consistency are vital for programmers struggling
to make sense of the Byzantine x86 architecture.

When one company is trying to reverse-engineer
the latest extensions introduced by another company, the
documentation is an important resource. Ideally, AMD
and Intel would collaborate on their x86 extensions, but
their competitive relationship and litigious history make
that almost as difficult to arrange as a Middle East peace
conference. Consequently, AMD has studied Intel’s docu-
mentation to support MMX, SSE, and SSE2 in current
AMD processors, and Intel has studied AMD’s documen-
tation to support AMD64 in EM64T processors. It’s a sure
bet that AMD’s engineers are right now poring over Intel’s
documentation for SSE3.

Unfortunately, reverse-engineering occasionally re-
sults in a misstep. The EM64T architecture doesn’t support
the LAHF and SAHF instructions in 64-bit execution mode,
because the first AMD64 processors didn’t implement the
instructions, and the AMD64 manuals listed them as invalid.
When AMD changed its mind, Intel found out too late to
include the instructions in its current definition of EM64T.

7

memory, keeping the 32- and 64-bit regions separate from
each other.

With 52-bit physical-memory addressing, x86-64 sup-
ports up to 4PB (petabytes) of memory. Today’s 32-bit x86
processors support up to 36 bits (Intel) or 40 bits (AMD) in

physical-address extension (PAE) mode, enough for 64GB
(Intel) or 1TB (terabyte; AMD) of memory. Again, to preserve
familiarity, x86-64 uses the same PAE paging structures found
in 32-bit x86 processors, but it defines more address bits. The
page tables are the same size—512 × 8 bytes—and each entry

© I N - S T A T / M D R M A R C H 2 9 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

AMD and Intel Harmonize on 64

Feature AMD Intel Notes

64-Bit Architecture Name AMD64 Extended Memory 64 Technology Generic substitute: x86-64
64-Bit Execution Mode Long mode IA-32e Requires a 64-bit OS

16/32-Bit Sub-Mode Compatibility mode Compatibility mode 64-bit OS runs 16/32-bit software
32-Bit Execution Mode Legacy mode Legacy mode 32-bit OS, 16/32-bit software
Mode-Switch Control By code segment By code segment Segment registers define mode

CDQE Supported Supported New mnemonic for existing opcode
CMPSQ Supported Supported New mnemonic for existing opcode
CMPXCHG16B Not supported Supported CMPXCHG8B in AMD64
LODSQ Supported Supported New mnemonic for existing opcode
MOVSQ Supported Supported New mnemonic for existing opcode
MOVZX Supported Supported 64-bit version of existing instruction
STOSQ Supported Supported New mnemonic for existing opcode
SWAPGS Supported Supported Genuinely new; see Table 1
SYSCALL Supported in all modes Supported only in 64-bit mode See text
SYSRET Supported in all modes Supported only in 64-bit mode See text

SYSENTER Supported only in legacy mode Supported in all modes See text
SYSEXIT Supported only in legacy mode Supported in all modes See text
LAHF Supported in all modes Supported only in 32-bit modes See text
SAHF Supported in all modes Supported only in 32-bit modes See text
Other Instructions 27 instr invalid in 64-bit mode 27 instr invalid in 64-bit mode Not the same 27 instructions

Extended General-Purpose Registers 8 x 64 bits 8 x 64 bits Extended from 32 to 64 bits
New General-Purpose Registers 8 x 64 bits 8 x 64 bits r8–r15
New Media Registers 8 x 128 bits 8 x 128 bits XMM8–XMM15
Existing Media Registers 8 x 128 bits 8 x 128 bits XMM0–XMM7 (no change)
Existing Floating-Point Registers 8 x 80 bits 8 x 80 bits No change
Extended Instruction Pointer (RIP) 1 x 64 bits 1 x 64 bits Extended from 32 to 64 bits
Extended Flags Register 1 x 64 bits 1 x 64 bits Extended from 32 to 64 bits
Extended-Register Prefix REX (4 bits, 16 opcodes) REX (4 bits, 16 opcodes) Allows use of new registers
Extended Feature-Enable Register EFER IA32_EFER 64-bit feature selection
Extended Control Registers CR0–CR4 CR0–CR4 Extended from 32 to 64 bits
Extended Descriptor-Table Registers GDTR, IDTR, LDTR, TR GDTR, IDTR, LDTR, TR Flat-memory table location
New Task-Priority Register TPR (CR8) TPR (CR8) Control external interrupts
Debug Registers 8 x 64 bits 8 x 64 bits Extended from 32 to 64 bits
Uniform Byte-Register Addressing Yes Yes Access 8/16/32/64 bits in registers

64-Bit Mode Virtual Memory Flat 64-bit addressing Flat 64-bit addressing 16EB (exabytes) virtual memory
64-Bit Mode Physical Memory* Flat 52-bit addressing Flat 52-bit addressing 4PB (petabytes) physical memory
32-Bit Mode Physical Memory* Segmented 40-bit addressing Segmented 36-bit addressing AMD: 1TB (terabyte); Intel: 64GB
64-Bit Mode Page Table 512 x 8 bytes 512 x 8 bytes Defines 52 bits instead of 36 bits
32/64-Bit Mode Page Sizes 4K, 2MB 4K, 2MB Introduced with PAE mode
64-Bit Memory Segmentation Single code, data, stack space Single code, data, stack space FS/GS segments optional
Canonical Memory Addressing Required in 64-bit mode Required in 64-bit mode All unused bits must be 0 or 1

New Data-Addressing Mode RIP-relative addressing RIP-relative addressing 64-bit mode only
Stack-Pointer Size Extended from 32 to 64 bits Extended from 32 to 64 bits No prefix overrides
Virtual 8086 Mode Supported only in legacy mode Supported only in legacy mode Allows 16-bit real-mode execution
Interrupt Handlers and Drivers Must be 64-bit code Must be 64-bit code Exception: system mgmt interrupts
GPRs - Mode Switching Upper 32 bits not saved Upper 32 bits not saved Upper 32 bits invisible in 32-bit mode

Memory Addressing

Architecture and Nomenclature

New 64-Bit Instructions

Deleted Instructions

Register Files

Miscellaneous Features

Table 3. This is a summary of the similarities and differences between AMD’s AMD64 and Intel’s EM64T architectures. Similarities greatly outnum-
ber differences, so the table highlights the most important differences in purple. Other differences, such as naming conventions, are insignificant.
*Implementation dependent.

8

now defines 52 memory-address bits instead of 36 or 40 bits.
Page sizes also remain unchanged: 4K or 2MB.

64-Bit Compatibility Good for Industry
Miscellaneous other features are the same in both 64-bit ISAs.
A new data-addressing mode, known as RIP-relative address-
ing, uses the extended 64-bit relative instruction pointer
(RIP) as the base address for the displacement to the next
instruction. Previously, only a control-transfer instruction
could use a displacement based on the instruction pointer.
RIP-relative addressing is useful for position-independent
code libraries shared by multiple application programs.

The new x86-64 stack pointer, also extended to 64 bits,
fixes the stack size and cannot be overridden by an instruc-
tion prefix or a control bit in the stack-size (SS) descriptor,
as it can be in 32-bit modes.

Device drivers and interrupt handlers called by a 64-bit
operating system must be written in 64-bit code, except for
system-management interrupt handlers. When a handler
switches contexts between 64-bit execution mode and 32-bit
compatibility mode, the upper 32 bits of the 64-bit GPRs
aren’t preserved in 32-bit mode; they are undefined. That
shouldn’t be a problem, because the upper 32 bits aren’t visi-
ble to 32-bit programs. Of course, a switch back into 64-bit
execution mode restores the entire contents of the registers
for 64-bit programs. Table 3 sums up our comparison of the
64-bit ISAs from AMD and Intel.

Both AMD and Intel deserve commendation for their
work on x86-64. AMD is due the most credit for inventing
the 64-bit extensions and for preserving the essential charac-
ter of the x86. The temptation must have been great to purge
the architecture of its historical baggage and replace it with a
wholly new architecture, reflecting modern design principles.
Although some critics may never forgive AMD for not grasp-
ing that once-in-a-lifetime opportunity, MPR agrees it was
more important to retain strong connections with the x86’s
basic nature, for the sake of familiarity and backward com-
patibility. In addition, the commonality between the 64- and

32-bit ISAs should simplify microarchitecture design—an
x86-64 processor can use the same instruction decoders, reg-
isters, and other resources for both instruction sets. A clean
break with the past—such as Intel made with the IA-64
architecture, despite its backward compatibility with x86
software—could have split the industry and made AMD64
harder to accept, especially for Intel.

Indeed, AMD64 is such a logical extension of the x86
that Intel, had it acted first, probably would have designed a
64-bit x86 architecture not significantly different from
AMD64. That likelihood, plus Microsoft’s insistence that it
will support only one 64-bit x86 architecture, is probably the
reason EM64T and AMD64 are largely compatible. One can
only imagine the internal strife that must have preceded
Intel’s wrenching decision to reverse-engineer EM64T from
AMD64. Intel deserves credit for swallowing its pride and not
plunging the industry into chaos with two mutually incom-
patible 64-bit x86 architectures.

Although minor incompatibilities exist, we don’t believe
Intel will use them as a wedge between EM64T and AMD64.
The fact is that Intel remains well positioned to compete with
AMD on other grounds. Intel is currently about a year ahead
of AMD in fabrication technology, with 90nm processors
already shipping in quantity; AMD probably won’t deliver
90nm chips in quantity until late this year or early 2005.
(Although Intel’s first 90nm processors aren’t the big leap over
130nm processors usually expected, that situation will soon be
rectified.) Intel’s latest Prescott Pentium 4 has SSE3 media
extensions; AMD is perhaps a year away from supporting
SSE3. Intel’s recent processors can do simultaneous multi-
threading (Hyper-Threading technology); AMD’s cannot.
Intel’s Pentium M processors bring strong performance and
lower power consumption to the fast-growing mobile-PC
market; AMD lacks a comparable CPU microarchitecture
especially designed for low power. Intel’s IA-64 still enjoys a
performance advantage over x86-64, which is important for
high-end servers. And, of course, Intel’s famous marketing
muscle virtually ensures that EM64T processors will eventu-
ally outsell AMD64 processors, despite AMD64’s earlier sprint
from the starting gate.

None of this should detract from AMD’s accomplish-
ment, however. Seemingly outflanked by IA-64 and relegated
to playing a secondary role for two decades, AMD has pushed
the indomitable x86 architecture into a new frontier of 64-bit
computing and has done so in a manner so logical and
inevitable that even Intel is joining the ride. AMD’s coup
won’t lead to a reversal of fortune—Intel will remain the
market leader—but the momentary role-reversal is a strange
sight to behold.

© I N - S T A T / M D R M A R C H 2 9 , 2 0 0 4 M I C R O P R O C E S S O R R E P O R T

AMD and Intel Harmonize on 64

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

F o r M o r e I n f o r m a t i o n

Both AMD and Intel provide their 64-bit x86 manuals in
book form and online. The online versions can be down-
loaded free. For AMD’s manuals, see www.amd.com/
us-en/Processors/DevelopWithAMD/0,,30_2252_
9044,00.html#amddocs. For Intel’s manuals, see
www.intel.com/technology/64bitextensions/.

